Laser CO₂ and Radiofrequency: effective synergy for skin rejuvenation

Giuseppe Scarcella

Summary

Laser CO₂ and Radiofrequency: effective synergy for skin rejuvenation

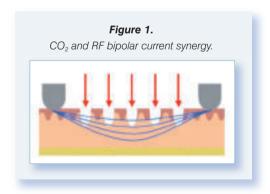
The CO₂ Laser Resurfacing, traditional and fractional, is now established and widely used method for treatments of photo-rejuvenation and scarring.

The ongoing and innovative scientific research has developed a new instrument which coupled the CO_2 Laser System and a Non Ablative Bipolar Radio-Frequency to obtain at same time a reduction of down-time of treatments and an improvement of performances. Aim of this study is to analyse this new Laser, called SmartXide² (DEKA M.E.L.A. S.r.l., Italy), that should rewrite the CO_2 Laser technique crossing a new boundary for surgical lasers in the fields of dermatology, aesthetic medicine and plastic surgery for treating complex skin disorders such as acne scars, ageing and sagging skin.

Key words: Laser CO₂, Non Ablative Radio-Frequency, Synergy for skin rejuvenation.

ntroduction

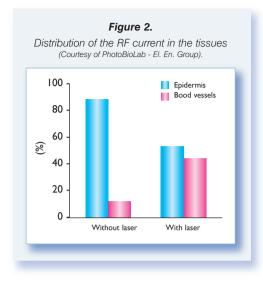
A new system has been added to the fractional CO_2 Laser source for deep heating of the skin by using Non-Ablative Radio-Frequency electrodes (RF) that make it possible to safely and effectively target the different skin layers of the dermatological disorders to be treated.


This new fractional device, by exploiting the simultaneous and modular synergy of the CO_2 Laser and Radio-Frequency, makes it possible to induce various biological effects on the treated tissue that range from dermal stimulation for the production of new collagen, to regeneration of tissue texture, enhancing smoothness and skin-tone.

The versatility of this system has been further improved by the innovative Pulse Shape Design Technology with its new laser pulse shapes (Smart-Pulse, D-Pulse and H-Pulse), never before applied in laser surgery.

The combination of these two sources (CO₂ Laser and Non-Ablative Bipolar Radio-Frequency) delivered in "*almost*" simultaneous mode set the stage for obtaining synergism and making it possible to achieve a twofold result:

 enhanced efficacy of treatment due to the synergy of the two methods; reduced healing times, side effects and possible complications.


The CO_2 laser energy pre-heats the target tissue, reducing impedance and allowing the RF to reach the same target more efficiently, more uniformly and at greater depth (Figure 1).

In the presence of the two energies, the action mechanism can be summarised as follows:

- CO₂ laser on the skin induces hyperaemia in the papillary dermis;
- the hyperaemia and consequent rise in temperature and reduction in the relative tissue

Dermatologist, Verona, Italy National Head of ISPLAD High Technology Department

impedance, together with the special emission from the handpiece, allow a constant passage of the RF current through the blood vessels with a 40% increase in the energy administered;

- besides enhancing the treatment efficacy, the deep hyperaemia generated by the RF also increases the general hyperaemia for some days, leading to a more durable effect over time;
- the presence of persistent hyperaemia also accelerates the tissue healing process.

From a series of tests on the forearm, an almost 40% reduction was observed in clinical healing times and relative downtime. These observations were later confirmed by microscope studies to assess the expulsion times of the fibrin microplugs (DOTs).

In short, the combination of the two methods leads to several significant beneficial effects:

- transfer of the energy from the surface layers to the deeper layers in a considerably more uniform manner, giving rise to enhanced treatment efficacy;
- confinement of the superficial hyperaemia, limiting the downtime and potential side effects and related complications;
- reduced healing times.

This was also confirmed by immunohistochemical investigations of in vivo studies of ovine tissue to assess the expression of several cytokines such as Ki67 (indicative of cell proliferation

Figure 3.

Comparison between CO_2 and CO_2+RF on forearm (since healing times on the arm are longer than those of the face, the value to be considered is the relative reduction, not the absolute value).

in progress), Factor VIII (indicative of neoangiogenesis in progress) and others.

These studies too demonstrated how the combined use of RF and CO_2 Laser induces deeper and better diffused and distributed biostimulation of the tissue with acceleration in tissue turnover.

Materials and methods

The study was conducted in a private laser dermatological practice. From February to September 2011 a total of 10 patients were enrolled (5 males and 5 females) aged 17 to 60 (mean 35 years), 2 with phototype II, 6 with phototype

Table 1.

Laser and RF parameters used in SmartXide².

Dwell time	500 - 1000 μs
Spacing	500 <i>µ</i> m
SmartStack	from 1 to 3
Scanning mode	SmartTrack
Pulse Mode	S-Pulse for Scars & Refreshing of the Face; D-Pulse for Facial Ageing
Energy per DOT	7.5 mJ for Refreshing 15 - 45 mJ for all other Txs
RF power	20-30 W
RF time	2-3 sec

Before treatment

2-day follow-up

2-week follow-up

Figure 4. Acne scars:

Right side: CO_2 only - Left side: CO_2 +RF - CO_2 : S-Pulse, 1000 μ s, 500 μ m, Stack 3, 45 mJ × DOT - RF: 30W, 3 sec. The patient has less irritation and bleeding and fewer scabs on the left side.

Figure 5. Refreshing: Right side: CO_2 only - Left side: CO_2 +RF - CO_2 : S-Pulse, 500 μ s, 500 μ m, Stack 1, 7,5 mJ x DOT - RF: 20W, 2 sec The patient has less erythema and oedema immediately after Tx and significantly less irritation and discomfort 2 days after

Before treatment

Immediately after treatment

2-day follow-up

2-day follow-up

Figura 6. Acne scars:

Right side: CO_2 only - Left side: CO_2 +RF - CO_2 : S-Pulse, 1000 µs, 500 µm, Stack 2, 30 mJ x DOT - RF: 20W, 2 sec There are less irritation and bleeding and fewer scabs on the left side of the patient's face. III, and 2 with phototype IV (Fitzpatrick's Skin Phototypes).

Seven patients had facial acne scars; 1 patient had acne scars on the back; 1 patient was treated for refreshing of the face and 1 for facial ageing. After obtaining informed consent from all patients, a "*Split-Face*" treatment with SmartXide² was carried out programmed as follows:

- right side: CO₂ laser only;
- left side: CO₂ laser (using the same parameters as the right side) + Radio-frequency.

All patients were instructed to:

- take Acyclovir tablets 400 mg four times daily for 4 days, starting the day before Tx;
- avoid applying moisturizers the day before Tx;
- avoid make-up the day of Tx;
- apply after Tx, several times a day and for a week, a cream with hyaluronic acid and usnic acid;
- apply Vaseline every night from the third day;
- use only cleansing milk and cotton pads, not water, for cleansing;
- be able to make-up after the third day;
- avoid sun exposure and use sunscreens for at least one month after Tx.

An hour before the treatment was applied to all patients an anesthetic cream (4% prilocaine, 6% lidocaine, 6% tetracaine).

Photographs were taken, using a digital camera *Pentax X 90 Reflex*, before Tx, immediately after Tx, 2-3 days after Tx and at 2, 6 weeks follow-up.

Results

Immediately after treatment there was slightly less erythema on the side treated with Laser CO_2 +RF.

Two to three days after treatment, the side with combined radio-frequency showed much less irritation, bleeding and scabs than the side treated with CO_2 laser only. All the patients reported that they felt less "*discomfort*" on the left side.

The side treated with the CO_2 Laser + RF combination showed "*Restitutio ad Integrum*" within an average of 5 days, while the side treated with

 CO_2 laser alone healed within an average of 7 days.

At follow-up, the side treated with CO₂ Laser + RF showed better results over the weeks due to enhanced skin tone and compactness. No long-term side effects were observed.

Conclusions

Over recent years there has been a huge increase in the demand for laser treatment for various kinds of scars and the signs of ageing, or simply to improve skin texture with Refreshing treatments. At the same time, however, there has also been an increase in the "logistic" requirements of patients. In a world where we all are engaged in intensive relational life, it is increasingly difficult to "take time off" to undergo temporarily disabling procedures.

The introduction of the fractional CO_2 technology which takes these important aspects into due consideration, has now considerably reduced the downtime of these treatments as well as side effects and possible complications.

Today, with the introduction of this new system combining emission of CO_2 Laser and Non-Ablative Bipolar Radio-Frequency, it is possible not only to reduce downtime and related recovery times but, even more important, to improve the performances of the treatments.

The integration of these two energies appears to intensify the thermal effects on the treated tissues, guaranteeing better results in less time and with fewer sessions, without increasing risks or side effects.

References

1. Fulton JE, Shitabata PK. CO_2 Laser physics and tissue interactions in skin.Laser Surg Med 1999; 24:113-21.

2. Zelickson B, Kist D, Bernstein E, et al. Histological and ultrastructural evaluation of the effects of a radio-frequency-based non-ablative dermal remodeling device: A pilot study. Arch Dermatol 2004; 140:204-9.

3. Dierickx C, et al. Deep dermal optical/islands damage as a novel approach to skin tightening. Abstracts of ASLMS; Boston, 2006.

4. Geronemus RG, et al. Treatment of facial acneiform scars with fractional photothermolysis. Abstract of ASLMS; Boston 2006.

5. Fitzpatrick RE, Rostan EF, Marchell N. Collagen tighten-

ing induced by carbon dioxide laser versus erbium:YAG laser. Laser Surg Med 2000; 27:395-403.

6. Sasaki GH, Travis HM, Tucker B. Fractional CO₂ laser resurfacing of photoaged facial and non-facial skin: histologic and clinical results and side effects. J Cosmet Laser Ther 2009; 11:190-201.

7. Hantash BM, Bedi VP, Kapadia B, et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Laser Surg Med 2007; 39:96-107.

8. Hantash BM, Bedi VP, Cha KF, Zachary CB. Ex vivo histological characterization of a novel ablative fractional resurfacing device. Laser Surg Med 2007; 39:87-95.

9. Prignano F, Campolmi B, Bonan P, et al. Fractional CO_2 laser: a novel therapeutic device upon photobiomodulation of tissue remodeling cytokine pathway of tissue repair". Dermatol Ther 2009; 22(Suppl 1): S8-15.

10. Gotkin RH, Sarnoff DS, Cannarozzo G, et al. Ablative

skin resurfacing with a novel microablative CO_2 laser. J Drugs Dermatol 2009; 8:138-44.

11. Katz B. Efficacy of a new fractional CO_2 laser in the treatment of photodamage and acne scarring. Dermatol Ther 2010; 23:403-6.

12. Rinaldi F, Sorbellini E, et al. Evaluation of CO₂ fractional laser effect on the skin by confocal microscopy. J Plastic Dermatol 2010; 6:167-75.

13. Sadick NS. Combination Radiofrequency and Light Energies: Electro-optical Synergy Technology in Aesthetic Medicine. Dermatol Surg 2005; 31:1211-17.

14. Alster TS, Lupton JR. Nonablative cutaneous remodeling using radiofrequency devices. Clin Dermatol 2007; 25:487-91.

15. Scientific Report of SmartXide² of Feb 2011 at Campus Biomedico Rome – PhotoBioLab Research Unit of El. En. Group. S.p.A.